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Abstract 

Spectral  Empirical  Orthogonal  Functions  (EOFs)  derived  from  the 

covariance  of  satellite  radiance  spectra  may be interpreted  in  terms  of  the  vertical 

distribution of the  covariance of temperature,  water  vapor,  and  clouds.  This has 

been  done for four  major  geographic  regions:  the  tropical  oceans;  mid-latitude 

oceans;  and  three  important  land  areas.  The  purpose of  the  investigation is to 

demonstrate  the  important  constraints  that  resolved  spectral  radiances  can  place 

upon  climate  models. 
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1.  Introduction 

The  need for a  comprehensive  global  climate  observing  system  in  order  to  test  the  predictions of 

climate  models  is  often  remarked  upon  in  the  scientific  literature e.g., Gates, et al. (1995). In a 

series of papers  we  have  examined  the  importance  of  satellite  observations  of  calibrated,  resolved, 

thermal  radiances  in  this  context.  Haskins,  Goody  and  Chen (1997), hereafter  called HGC, 

discussed  statistical  aspects  of  data  from  the  1970/71 IRIS mission,  including  spectral  Empirical 

Orthogonal  Functions  (EOFs),  and  showed  how  modeled  and  observed  statistics  could be compared. 

Goody  and  Haskins  (1998)  showed  that  resolved  radiances  provide  very  high  precision,  absolute 

data.. 

Satellite  measurements  of  spectrally  resolved  thermal  radiances  have  a  unique  status for 

climate  observing.  They  give  direct  information  on  the  planet's  attempts to reach  energy  balance, the 

most  fundamental  of all constraints  upon  climate.  Because  they  can be calibrated  against  absolute 

standards  they  can  be  compared  directly to other,  independent  radiance  measurements.  They  provide 

homogeneous  data  over  most or all of the  globe,  and  they  carry  information  on  the  vertical  profiles  of 

the  essential  climate  variables;  temperature,  water  vapor  and  cloud.  They  give  quantitative  and 

interpretable  thermodynamic  information  on  clouds,  perhaps  the  most  important,  and  least 

understood,  element  in  the  internal  variability of the  atmosphere. 

The  questions  remaining  relate to the  interpretation of the  data.  The  purpose of this paper is to 

take  the  discussion of resolved  spectral  radiances  a  step  further  by  inverting  second-order  spectral 

statistics  (specifically  Empirical  Orthogonal  Functions or EOFs) to give  covariances  of  temperature, 

humidity  and  cloud  in  the  troposphere  and  lower  stratosphere so that  the  constraints  imposed  upon 

climate  models by radiance  data  are  in a form  more  familiar to climatologists. 
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a. The use of second-order  statistics 

The  comparison  between  mean  values  of  atmospheric  parameters as given by a general  circulation 

model (GCM) and as currently  observed  has  been  a  major  part of  attempts  to assess the  value  of 

climate  models (Gates, et al., 1996). It is important for a GCM to reproduce  correctly  the  current 

mean  climate  but  good  agreement  gives  no reason to believe  predictions  of  perturbed  climate states. 

According to k i t h  (1975) the  important  comparison is between  time-lagged  covariances  among 

climate  variables. 

k i th  applied  the  fluctuation-dissipation  theorem  of  statistical  mechanics to an  equilibrium 

system,  with  the  following  results,  which  will be stated  without  proof.  Consider  a  system  with N 

independent  variables, ua ( t ) ;  a = 1, ..., N satisfying  a  Liouville  equation.  Natural  variability  will 

cause  the  variables to fluctuate.  The  time-lagged  covariance  matrix  is: 

where  the  overbar  denotes  an  ensemble  average. 

If the  system is subjected  to  a  constant,  infinitesimal  forcing  that  causes  variables  to  change at 

rates, &&, it may be shown  that  the  change of another  variable  can be stated  in the form, 

where gaP(z) is the  mean  linear  response  function for the  system  for  the  time  interval 7. gap(%) 

defines  the  model's  climate  sensitivity. 
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The  fluctuation-dissipation  theorem  states  that, 

The  denominator  is  the  total  variance of the  unperturbed  state. 

Equation (3) relates  the  system  response  function to covariances  between  climate  variables  in 

the  unperturbed  system;  mean  values  of  the  variables do not  appear  in  the  equation. If the  system is 

to  respond  correctly,  these  covariances  should be correctly  represented  and,  since  they are relatively 

easy  to  measure,  they  provide  an  attractive  basis for model  tests.  The  predictive  capability  of  a  model 

can  therefore  be  tested  from  statistical  data on the  unforced  system.  This is the  basis  for 

investigations  by  Polyak  (1996),  and by Polyak  and  North  (1997a,b). The validity  of  equation (3) 

for real systems  has  been  assessed  analytically  by  Bell  (1980)  and  numerically  by  North,  Bell  and 

Harding  (1993).  However,  the  precision  of  equation (3) is not  the  issue.  The  relationship is 

important  because it indicates  the  critical  observations to make;  a  similar  conclusion  was  reached  by 

HGC  on  the  basis of qualitative  reasoning. 

This  paper  does  not  treat  the data in  precisely  the  way  suggested  by  equation (3) in  two 

respects.  The  first is that  the  quantities  derived  from  the  observed data are not  covariances  for  a 

single  time  lag,  but  are  weighted  averages  over  a  range of time  lags.  The  data are averaged  over  1, 2, 

5, or  15 days, and  covariances are calculated for all data in  a  10-month  period.  Most  commonly 5- 

day  averages are employed, when  the  result is a  weighted  average  of  equation  (1)  from 5 to 300 days. 

The  second  respect is that  Empirical  Orthogonal  Functions  (EOFs) are used.  EOFs  and  covariance 

matrices  are two aspects of the  same  data.  Both  of  these  are  matters of convenience and presentation; 

neither  affects  the  information  content  of  the  treatment. In this paper  it is not  our  intention  to  apply 
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equation (3) to derive  climate  sensitivity,  but to verify  that  basic  model  physics is realistic  by 

comparing  second-order  statistics of climate  variables  for  a  model  with  those  that  are  observed. 

The  restriction to 10 months of data  means  that  only  those  processes  with  characteristic  times 

less  than 10 months  can  contribute.  Oceanic  phenomena,  even ENSO, are not  involved. However, 

all time  constants  intrinsic to the  atmosphere as an  isolated  system are much  less  than  a year, and  it is 

possible to,test them  with  data  covering  one  seasonal  cycle.  While this may treat only  a  part  of  the 

climate  change  problem, it is  a  very  important  part.  A  frequently  asked  public  policy  question  is: 

How  will  the  atmosphere  react if greenhouse  gases  are  doubled, and no other forcing takes place? 

This question  can  be  answered  on  the  basis of a  model  with  correct  response  on  an  annual time scale 

and  less. 

b. The IRIS data 

The IRIS data  were  gathered  over  a  10-month  period  from  April 1970 to January 197 1. 720 IRIS 

frequency  channels  cover  the  spectral  range 400 to 1600 cm".  Radiances are measured  in  units of 

(mW  m-'  wavenumber"  steradian")  which,  being cumbersome,  will  often be omitted.  The  spectral 

resolution  was 2.8 cm" and all measurements  were  in  the  nadir.  The  radiometric  accuracy was 

probably  better  than 1 K, but  since  variances  and  covariances are based  on  differences  between  two 

radiance  measurements,  radiometric  accuracy  is  irrelevant to first  order.  These data were  assembled 

into 1-, 2-, 5- and  15-day  averages  for  the  geographic  regions  defined  in  table 1 and  figure 1. 5-day 

averages  give  the  best  combination of even  sampling  and  a  sufficient  number  of  independent 

observations,  and  are  most  commonly  used in this  paper. 

During  the  lifetime of the IRIS mission,  thousands  of  individual  spectra  were  recorded in each 

geographic  region,  each  with  a  footprint  of  about 100 km. Figure 2 shows  the  distribution of 0 

individual  footprints  for  one  5-day  period  in  the  Central  Pacific  region,  superimposed  upon  the  grid 

used by the  GCM  that  will  be  discussed.  Both  the  satellite  and  the  GCM  give  data at two times  of 
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day,  approximately 12 hours  apart.  Equal  amounts of data for the  two  times are averaged to reduce 

diurnal  sampling  errors. 

Figures  from 4 onward  show  spectra  that  are  derived  from IRIS data.  Different spectral 

regions  are  related  to  different  sources of variability.  As  discussed in HGC, there are qualitative 

differences  between  the  following:  the two water  bands at 400 to 600 cm"  and 1200 to 1400 cm";  the 

carbon  dioxide  fundamental  from 600 to 800 cm"; the  window  region, 800 to 1200 cm"; the 1042 

cm" ozone  band;  and  the  Q-branch  of  the  fundamental  band  of  methane  at 13 1 1 cm". 

For  clear-sky  radiances,  these  spectral  bands  convey  the  following  information.  The  methane 

and  water  bands  refer  to  the  upper-  to  mid-troposphere.  The  window  region is governed  by 

conditions  at  and  near to the  surface.  The  center  and  parts of  the  wings  of  the  carbon  dioxide  band 

refer  to  conditions  in  the  stratosphere,  with  the  center of the principal  Q-branch  radiating to space 

from an  altitude  of 30 km. The  ozone  band is formed  partly  in the troposphere  and  partly in the 

stratosphere.  Ozone  concentrations are variable  and  the GCM that  we discuss  makes no attempt  to 

model  them.  The  spectral  region  from 981.0 to 1074.9 cm" is, therefore,  omitted  from all 

inversions.  The  spectral  region  from 1400 to 1600 cm" is also omitted  because  the  signal-to-noise 

ratio  was  low. 

The  above  statements do not  apply  in  the  presence of cloud.  Where  cloud  is  present,  radiation 

from  below  the  cloud  top  will  normally  be  completely absorbed, and  replaced  by  something  close  to 

black-body  emission  from  the  cloud  top.  In  the  window  region,  variability  may be caused by  the 

variability of cloud  amount or by  variability  of  temperature  and  humidity  at  the  surface or in the  lower 

atmosphere.  For  the  center  of  the  carbon  dioxide  fundamental,  radiation is from  the  stratosphere,  and 

is  unaffected  by  cloud. 

The EOFs that  will be discussed  in this paper  are spectrul EOFs, i.e.  they  are  based  upon 

covariances  between  radiances  at  different  frequencies  in  the  spectrum, Z,(x,t) . Let 

z;(x,t) = Z,(x,t) - I , ,  
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where x is  the  position  vector, t is  time,  and  the  overbar  indicates  an  average  over  time  and all 

positions in a  geographic  region.  The  data  may be regarded as a  vector  in  v-space  with 720 

components  corresponding to the 720 observed  frequencies.  The EOFs, of), are unit  vectors  in V- 

space,  and  they  are  derived  from  the  covariance  matrix, 

where 1"' is  the i '* eigenvalue. An EOF multiplied by its  amplitude is a Principal  Component or 

PC, 

A Principal  Component  is  a  vector  in  v-space  with  the  dimensions of radiance. 

c. Inversions 

The  radiance  can be expressed  in  terms of variable  atmospheric  parameters,  temperature,  humidity 

and  cloud  throughout  the  atmosphere  (ozone is not  treated  here,  and  carbon  dioxide,  methane,  and 

nitrous  oxide are considered  to be of  fixed  concentrations;  aerosols are neglected in common  with 

almost all GCM calculations, an  omission  that  needs  more  attention  in  the  future).  Numerical 

methods  define  these  parameters in discrete  layers  from  the  surface  to - 40 km. Let  the  variables be 

denoted  by pn , and  their  departures  from  a  space-time  mean by p,' . For  small  departures  from 

means, 
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or, in matrix  notation, 

I' = Jp', (9) 

where p' and I' are  vectors  whose  elements  are pi and I:, respectively,  and J is a  Jacobian matrix 

a T,, whose  elements are J,,, = - . a P n  

The  Principal  Components are vectors  in  v-space  that are functions  of  the  departures  of 

radiances  from  mean  values.  Each  may,  therefore, be related to a  vector of departures in p-space, 

E(O, by equation (9), 

PC (i) = JE") (10) 

There  is  an  extensive  literature  dealing  with  the  inversion of  equation (lo), in order that 

atmospheric  parameters  may be retrieved  from  satellite  data for weather  forecasting  purposes.  The 

technique  that  we  have  adopted (SWSVD) is described in the  Appendix.  In  principle,  the  inversion 

can  yield  as  many  atmospheric  parameters as there are frequencies in the  spectrum (720), but  the 

inversion  is  not  well-conditioned  and  many of the  elements  of  the  Jacobian are effectively zero, with 

the  result  that  we  recover 19 or less  variable  atmospheric  parameters. 

The  remainder  of this paper  is  concerned  with  elements  of E(i), i.e.  departures of atmospheric 

parameters  from  space-time  means.  Since  a  Principal  Component  represents data that are correlated 

between  frequencies,  the  recovered pi s are  the  correlated  departures  from  their  means  that  give  rise 

to  the  Principal  Component. It does  not,  however,  follow  that E('), is  a  Principal  Component  of  the 

variable  atmospheric  parameters. 

It is appropriate  here to remind  the  reader of a  statement  made in $1, that  the  purpose  of this 

discussion  is to demonstrate  "the  constraints  imposed on climate  models [by spectral statistics ] in a 

8 



form  familiar to climatologists".  Data  inversions, as described  here,  may  not be the  best  approach  to 

utilization of radiance  data  for  testing  climate  models.  We  return to this subject in 95. 

The  elements  of  the  Jacobian are calculated  from  differences  between  two spectra, one 

calculated  before  and  one  after  a  change  of  a  parameter  by  a  given  amount  in  a  given  layer.  The 

layers  and  parameters  used  are: relative  humidity (percent), W2 (0-2 km), W4 (2-4 km), W6 (4-6 

km), W8 (6-8 km), W12 (8-12 km), W16 (12-16 km); temperature (kelvin), TO (ground 

temperature), T2 (0-2 km), T4 (2-4 km), T6 (4-6 km), T8 (6-8 km), T12 (8-12 km), T16  (12-16 

km), T30  (20-30 km), T40  (30-40 km); clouds Cfraction), C4,  C8,  C12,  C16, opaque  cloud tops at 

4,8,  12 and 16 km,  respectively. 

Radiances  contributions  were  calculated  by  the  medium-resolution  program MODTRAN 

(Kneizys, et al., 1988, Wang, et al., 1996, and  Bernstein et al., 1996). A (1-2-1) running  average 

over 1 cm" intervals  gives  a  spectral  transfer  function  similar to IRIS. Because  two  spectra are 

subtracted  when  forming  variances  and  covariances  most errors in MODTRAN should  have  little 

effect  on  the  final  result.  In  one  instance,  however, MODTRAN calculations  are  probably 

unsatisfactory.  The  Q-branches of  the  two  hot  bands  flanking  the  carbon  dioxide  fundamental are 

very  sensitive to temperature  and  the  version  of  MODTRAN  used  here does  not  incorporate  line 

mixing. This effect is apparent  in  Figure 3 in  the  relatively  large  departures  in  the  Q-branches  at 6 18 

and 721 cm". It  was  rarely  possible to match  the  observed  variances in these  Q-branches,  but  that 

had  little  overall  effect on our results. Four of  the  calculated  difference  spectra are shown in figure 

Al.  

Jacobians  depend, to some  degree,  on  the  atmospheric  state of all higher  layers. MODTRAN 

offers  alternative  standard  atmospheres  including  tropical  and  mid-latitude  summer  and  winter 

atmospheres.  These  three  cases  give  significantly  different  results.  Seasonal  change  in  the  tropics is 

small  and  use  of  a  single  standard  atmosphere  was  judged to be  appropriate.  Mid-latitudes, on the 

other  hand,  should  preferably be broken  down  by  season. Since seasonal  standard  atmospheres  were 

not  available,  mid-latitude  cases  using  the  entire IRIS data  set  were  calculated  twice, both for 
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summer and for winter  elements,  in  order  to  bracket  the  uncertainties;  both are reported  in  relevant 

sections. 

Not all contributions to the  radiance are both  important  and  independent.  W16  was  used  in 

the  analysis  but  never  contributed  significantly  to  a  solution.  The  elements  C8  and  C16  can be 

combined to give  a  spectrum  very  similar  in  shape to C12.  Although  the  distinction  among  these  three 

cloud  layers  is  preserved  in  the  analysis,  they are best  regarded as indicating  high clouds, with tops 

somewhere  between 8 and 12 km. For  less  obvious reasons, C4 and T2 are virtually 

indistinguishable  in  shape,  and  a  single  contribution  from  C4T2,  expressed  in  kelvin, is employed; 

C4T2  may  be  interpreted Bs either  a  cloud  or  a  temperature  element.  Other  elements are correlated  to 

lesser  degrees.  Those  which  have  correlation  coefficients  in  excess of 0.9 are  shown  in  table 2.  We 

may  anticipate  ambiguities in the  interpretation  when  these  elements are involved. 

d. Errors and Significance 

Given  ideal  inversions,  errors  in  interpretation  should  depend  only  on  the  significance of the  EOFs or 

upon  system  noise  in  the  retrieval  process  (see  Rodgers,  1990, for general  discussion).  EOF 

significance  in  the  presence of a  noisy  data  field  is  difficult to establish  (Preisendorfer,  1988),  but all 

of our analysis is confined to the fust and  second  EOFs,  the  significances of which  are obvious. 

Errors  due  to  system  noise are negligible  because  of  the  large  data sets that are used  here.  The 

vertical  structure  used  in  the  analysis is coarse,  and  it  is  possible  that no combination of contributions 

can fit the  data  exactly,  giving  rise to large  null-space errors (see Rodgers,  1990).  One  aspect  of 

compatibility  involves  the  MODTRAN program,  and  the  approximate  procedure  used to imitate the 

IRIS  spectral  transfer  function.  Both  are  inexact  and are responsible for most  of  the  departures in 

figure 3 (a  better fit is usually  obtained  when  GCM data are analyzed  because  these are also 

generated  from  MODTRAN).  The  root-mean-square  amplitude  of  the  residual  in  figure 3 is the 

residual mzs. It may be used  in  a  measure of  the  goodness of fit (g .0 . f . )  of a  solution,  and  can also 
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be used  to  place  a  bound  on  the  significance of individual  layer  contributions.  If  the  root-mean- 

square  amplitude of a Principal  Component, is the PC rms, the  goodness of fit  for  a  solution is 

defined  by, 

( PC r m ~ ) ~  - (residual m ~ s ) ~  
g.0. f .  = 100 

(PC 

The  contribution  to  a  Principal  Component by a  single  variable  is  one of the  terms  on  the  right 

hand  side of equation (9). Its root  mean  square is the contribution m s ,  

1 

contribution m s  = pi 

The contribution m s  is compared  to  the residual m s  in  figures 7,8,9,  and 10, and  in  tables 

3,4,6,  and 8. If the contribution m s  exceeds  the residual m s  the  contribution is considered  to be 

significant.  This  is  a  conservative  approach,  and  the  opposite  conclusion  (that  a contribution m s  

less  than  the residual m s  is not  significant)  is  not  necessarily  correct.  The  discussion  in  subsequent 

sections  is  restricted to contributions  that  are very significant  on this criterion. 

2. The  tropical oceans 

In  many  ways  the  tropical  Oceans  dominate  the  climate system. As representative  areas  we  examine 

the  Warm  Pool,  the  Indian  Ocean,  and  the  Central  Pacific  (see  table 1 and  figure  1 for definitions of 

the  geographical  regions).  Since  sea-surface  temperature is warmer  over  the  tropical Oceans than  in 
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other  regions  of  the  globe, it is possible  to  identify  spectra  with  relatively  clear  skies  (screened data) 

for  these  three  regions  by  comparing  maximum  brightness  temperatures in the  window  region  with 

climatological  sea-surface  temperatures  (see  HGC  for  details  of  the  procedure).  The  use  of  the 

screened  data  is  discussed  in  52.b. 

Figures  4, 5, and  6  show -the average  radiances,  standard  deviations  of  radiance,  PC1  and 

PC2  from IRIS observations  for the Warm  Pool,  the  Central  Pacific,  and  the  Indian  Ocean, 

respectively,  for  both  the  complete  data  set  and  for  the  screened  data. 

a. Vertical structure of covariance 

The  vertical  structure  of  covariance  for  the  tropical  Pacific PCls, as show in figures 4, 5, and  6  for 

the  complete  data  set,  has  been  analyzed  by  the SWSVD technique  (see  Appendix).  The  results are 

shown  in  figure 7. In all three regions  the  cloud  gives  the  major  variance  contribution,  and  it is the 

main  reason  for  the  large  explained  variances  for all three PCls (Warm  Pool 98.3%, Central  Pacific 

93.3%, Indian  Ocean 97.9%). However, that is not  the whole  story.  The  water  and  temperature 

variations  shown in figure 7 are  correlated  with  the  cloud  variations  and  with  each other,  and 

contribute  to  the  explained  variance  of  the PC 1. 

The  significance of the  contributions  in  figure 7 can  be  judged  from  contribution  and residual 

ms’s ,  see 0 1 .d.  Most  contributions  are  significant.  The  most  significant  elements  for  the  individual 

regions  are:  Central  Pacific,  C4T2,  W12,  W6;  Indian  Ocean,  C4T2,  T4,  W2;  Warm  Pool,  W8, T6. 

For  all  of  these  the (contribution m)/(residuaZ m) ratio is at least 3. All contributions may not be 

independent.  From  table  2,  W2  for  the  Indian Ocm may be associated  with  C4T2.  For  the  Warm 

Pool  W8  and T6 may be associated. 

The  three  sets  of  profiles  in  figure 7 have  both  similarities  and  differences.  The  water  profiles 

for  Indian  Ocean  and  Warm  Pool are similar.  Since  the  data are independent, this agreement is 
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unlikely  to  happen  by  chance,  and  confirms  the  significance  that  we  attribute to the  inversions.  The 

water  profiles  for  Central  Pacific  differ  from  the  others,  however;  the  large  value  of  W12 is highly 

significant. As far as temperature is concerned,  the  elements  T12  for  Central  Pacific  and  Indian 

Ocean  have (contribution ms)/(residual m) ratios  of  about 1.5. The IRIS Central  Pacific  clear-sky 

temperature  profile  shown  in  figure 8b is very  close  to  the  temperature  profile in figure 7a. It is not 

surprising  that  a  cloudy  PC  should  show  a  combination  of  cloud  and  clear-sky  behavior.  What is not 

obvious,  however, is why  they are  correlated. 

b. Comparison between IRIS and a GCM 

GCM  data  were  not  available  for  the IFUS observing  period,  and  instead  comparison is made  with a 

similar  phase  of ENS0 during  1988  (see  HGC  for  details).  The  GCM data available  to us did  not 

include  enough data on  clouds  to  permit  radiance  calculations  in  the  presence of cloud  cover. 

Comparison  is,  therefore,  limited  to  screened  (clear-sky) data obtained in the  same  manner as HGC. 

PCls for  screened  data  in  the three tropical  Pacific  regions,  and  the SWSVD analyses are shown in 

figures. 8,9, and  10. 

Agreement  between  regions for IRIS is fairly  close:  the  same  is true for GCM  taken 

independently.  For IFUS water  activity,  all three regions  show  W2,  W4, W6, W8 (marginally),  and 

W12  (bottom  half  only shown  in  the  figures),  with  the  same  signs. IRIS temperature  behavior is 

dominated  by a  large  negative  C4T2  in all three regions. This may be caused  by  low  cloud  rather 

than  temperature;  the  method  adopted for  screening  spectra  could miss small  amounts  of  low cloud, 

and  include  the  spectrum  in  a  clear-sky  category.  There is also  consistency  among  the  GCM  results. 

Water  elements  W6  and  W8  dominate.  C4T2  has  significant  contributions in all three regions,  but  the 

contributions  are  positive  in  Central  Pacific  and  Indian  Ocean  but  negative  in Warm Pool. 
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Commonality  between  GCM  and IRIS is exhibited  by  significant  contributions from  W6  and 

other  tropospheric  water,  and  from  temperature  activity,  principally in the  surface  layers.  But  the 

disagreements  are  significant.  This  comparison  illustrates  the  possibility  of  identifying  problem areas 

for  a GCM using  radiance  data,  but  until  calculations  are  available at the same  time as observations, 

and  until a GCM  can  provide  suitable  cloud  parameters,  such  comparisons are of  limited  value. 

3 Mid-latitude oceans 

a.  Weather  and seasonal  covariance 

Two  representative  regions  have  been  chosen in the  North  and South Pacific  (see  table  1  and  figure 

1).  Although  they  are  geographic  mirror  images,  there are important  differences  between  these  two 

regions  and  between  them  and  the  Central  Pacific  region.  These  differences  are  interestingly 

illustrated  by  standard  deviation  spectra  based  on  1-day,  2-day,  5-day  and  15-day  averages  (figure 

11).  The  Central  Pacific is, for the  purposes  of this discussion,  not  very  different  from  the  Warm 

Pool  and  the  Indian  ocean,  see  figures 4,5, and 6, apart  from  the  scale  of  the  variance  (square  of  the 

standard  deviation). 

The  representation  of  the  data  in  figure  1  1  allows  a  distinction  to be made  between  “weather” 

and  “seasonal”  variance. The 1-day  averages  should  contain  most of the  weather  variance  and all of 

the  seasonal  variance,  while  the  15-day  averages  should  contain  almost  no  weather  variance  but  most 

of  the  seasonal  variance.  The  difference  between  the two  represents  mainly  weather  variance.  Both 

sources  of  variance  are  important  for  maintaining  the  climate  state. 

I 

14 



The  general  level of  cloud  activity, as indicated  by  the  magnitude  of  the  standard  deviation at 

900 cm", is not  dissimilar in North,  South,  and  Central  Pacific,  but  the  time  spectrum  of  North 

Pacific is unique  in  showing  almost no variance  on  the  time  scales  between 5  to  15  days.  The 

weather  variance  in  the  North  Pacific  is  at  higher  frequencies  than  elsewhere  in  the  Pacific.  This  has 

an interesting  consequence.  For  North  Pacific  the  seasonal  standard  deviation is almost  twice as large 

as for  South  Pacific  and  Central  Pacific,  which  has an influence  on  the  Principal  Components  (53.b). 

The  most  striking  feature of  the  comparison  between  the  tropics  and  mid-latitudes  in  figure  11 

is the  contrast  between  the  variations  in  the  window  region  (mainly  clouds)  and  variations in the 

carbon  dioxide  fundamental  (mainly  stratospheric). In the Central  Pacific  the  stratosphere is 

quiescent  compared  to  the  cloud,  but  North  and  South  Pacific,  particularly  the  latter,  show  large 

stratospheric  variance.  Unlike  the  cloud  variance,  the  stratospheric  variance  has  1-day  and  15-day 

averages  that  are  almost  the  same;  the  stratospheric  variance  is  almost  entirely  seasonal. 

b. The Principal Components and the vertical structure of covariance 

The  first  two  Principal  Components  (PC1  and  PC2) are shown  in  figures  12  and  13  for  1-day  and 

15-day  averages.  For  1-day  averages  the  PC  1 s for  both  the  North  and  South  resemble  the  Central 

Pacific  (figure  5c),  with  little  contribution  from  the  carbon  dioxide  band,  despite  its  prominence  in  the 

North  and  South  standard  deviations.  From this we  may  conclude  that  the  stratospheric  and  cloud 

variations  are  largely  uncorrelated.  The  stratospheric  variance  appears  in  the  PC2  (figure  13),  with 

almost all of the  contributions  from  the  carbon  dioxide  and  ozone  bands,  and  very little contribution 

from  clouds. 

The 15-day  averages  present  a  different  picture. In the  North  Pacific  they  resemble  the  1-day 

averages,  but  they  differ  greatly  in  the  South  Pacific.  For  the  North  Pacific,  the  stratospheric 

variance is unchanged as the  averaging  period  increases  and,  while  the  cloud  variance  decreases,  it 

does  not  do so by  very  much  (figure 1 la). For  the  South  Pacific,  on  the  other  hand,  the  stratospheric 
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variance is larger,  while  the  cloud  variance  decreases  more  rapidly  with  averaging  time.  The 

numbering  of  the  PCs  is  based  on  their  explained  variance,  and  has  no  inherent  physical  significance. 

For  the  South  Pacific  the  explained  variance  for  1-day  averages is 71.5%  for  a  mainly  ‘cloud’  PC  and 

24.9% for  a  ‘stratospheric’  PC,  while  for  15-day  averages  the  figures are reversed  in order,  31.2% 

and  66.2%,  respectively. 

Table  3  shows  the  cloud  and  the  next  two  elements of  importance from the SWSVD analysis. 

The  switch  in  the  order  of  the  PCs  in the South  Pacific  going  from  1-day  to  15-day  averaging is 

shown  explicitly,  and  the  table  justifies  the  qualitative  identification  of  ‘cloud  PCs’  and  ‘stratospheric 

PCs’  that  was  made in previous  paragraphs.  The  table  also  shows  orthogonality  of  stratospheric  and 

tropospheric  behavior  in  the  North  and  South  Pacific.  Stratospheric  and  tropospheric  elements do not 

occur  together  except  for  a  small  correlation  between C 12  and  T30  in  PC2 of  the  South  Pacific. 

4 Three land areas 

Land  areas  differ  greatly  from  one  another.  We  discuss three particularly  interesting  regions,  the 

Amazon,  the  Sahara  and  the  Siberian  Tundra. 

a. Amazon 

IRIS data for the  Amazon are shown in  figure  14.  There is a  striking similarity to  the  Warm  Pool 

(figure 4), except  that  the  Amazon  variance is much  larger  (see  table 1). The  ozone  band in PC2 is 

the  only  important  qualitative  difference  between  the  two  regions,  but  the  PC2  share  of  the  variance is 

small  for  both  regions (1.7% for  Amazon, 1.1 % for  Warm  Pool). 

The  reason  for  this  coincidence is that  both  the  Amazon  and  the  Warm  Pool are dominated  by 

the  presence  of  a  cloud  layer,  at  16 km for the  Amazon  and at 12 km for the  Warm  Pool  (the 
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distinction  between  the  two  cloud  layers is slight).  For  the Amazon  the PC1 rms is 5.77, while  the 

contribution rms for  the  single  cloud  element is 5.62;  for  the Warm Pool  the  figures are 3.49  and 

3.38, respectively.  Table 4 shows the  principal  elements  in  the SWSVD analysis  of  PC1 for the 

Amazon. 

I 

b. Sahara 

Data  for  the  Sahara are shown  in  table 5 and  figure 15. The  Sahara shows unusual  and  interesting 

features,  most of which do not  appear to be recorded  in  existing  climatologies.  Three  points  illustrate 

the  variety  of  phenomena  that  can be determined  quantitatively  from  observations  of  resolved 

variances.  First,  the  radiance  (figure  15a)  stays  remarkably  constant  during  spring,  summer  and fall, 

and  falls  only  in  the  winter  season. Second, the  total  variance  (summed  over all frequencies)  within 

seasons is very  changeable  (table 5), with  the  variance  in  spring  nearly  five  times  that  in  the  winter. 

Third, the  variance  behaves  in  an  unusual  way  with  respect to the  averaging  time  (table 5). Little 

variance is present  between  2  and 5 days  averaging,  but  there is significant  variance  between 5 days 

and  15  days,  suggesting  that  there  are  strong  disturbances  in the Sahara  with  periods  about 10  days. 

Despite  the  change of total  variance  between  seasons,  the  PCs for each  season  are  similar,  showing 

that  there is little  change  in  the  physical  processes  between  seasons,  although  the  degree  of  activity 

changes.  SWSVD  analysis  on  5-day  averages of all IRIS data is given  in  table 6. 

For the Sahara, unlike  the  tropical  regions,  high  clouds  play  little  part  in  the  variance  of  the 

observed  radiances,  with  the  result  that no single  element  dominates  the  PC1.  The  most  important 

element is TO, the  surface  temperature.  Next is C4T2.  The  only  other  activity is W2 but  the  summer 

and  winter  contribution  are  inconsistent. All of  these  activities are associated  with  a  dominant 

convective  boundary  layer. 
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c. Siberian Tundra 

The  Siberian  Tundra  is  the  most  active  region  studied,  see  table  1,  and it has  other  unique  features, 

see  figure  16.  Little of its  large  variability is attributable to weather.  According to the data in  table 7, 

the  total  variance  between  averaging  times of 1 and 15 days, which  contains all the  weather  variance 

and  some of the  seasonal  variance, is 1.6  x lo4, while  the  seasonal  (15-day)  total  variance is 5.5 x 

lo4. Figure  16b  gives  more  details.  The  stratospheric  variance  (in  the  carbon  dioxide  band) is 

almost  entirely  seasonal. 

The total  variance  per  season is shown  in  table 7. The  ratio  between  fall  variance  and  winter 

variance is remarkably  large,  a  factor  of  about  13.  However,  the  average  total  variance  within 

seasons is quite small, 2.0 x lo4, which may be contrasted  with  the  total  variance for the  whole data 

set (for  5-day  averages),  6.28  x lo4. For  5-day  averages,  69% of the  total  variance lies between time 

scales of 90 days  (a  season) to 300 days  (the  data  set). 

Some  insight  into  these  long time scales  is  given  by  the  seasonally  averaged  radiances,  see 

figure  16a.  At 900 cm",  the difference  between  summer  and  winter  radiances  corresponds to about  a 

30K change  in  the  lower  atmosphere  temperature  variance. 

An unusual  feature  of  figure  16a is that  the  entire  spectrum rises and  falls  together.  For all 

other  cases  that we have  examined  the  carbon  dioxide  band  is  not, or only to a  small  degree,  covariant 

with  the  window  region. Thus the  characteristic  features of surface  and  stratosphere  changes  have 

not, up to now,  occurred  in  the  same PC, while  PC1 for all Tundra  data  (figure 16c) shows  lower 

atmosphere  features  together  with  a  substantial  contribution  from  the  stratosphere. 

Table 8 shows  the  principal  contributions  from  an SWSVD analysis.  Contributions are from 

temperature  only,  principally  from  the  troposphere,  and to a  lesser  degree  from  the  lower  and  upper 

stratosphere.  The  amplitudes  of  these  contributions  are  large,  approximately 10K, which is 

consistent  with  the  discussion of seasonally  averaged  radiances  above. 

18 



5 Discussion 

The  variety  and  precision  of  information  available  from  second-order  statistics  of  resolved  radiances 

is demonstrated  by  our  results.  Matching  model  predictions  to  observations for these data can 

severely  test  climate  model  performance;  the  work  of k i th  (1975) shows that  these are the 

appropriate  tests to ensure  that  a  model  has  the  correct  climate  sensitivity. 

A series of papers by  Polyak  (1996),  Polyak  and  North  (1997a,b)  and  Kim,  North  and 

Hegerl  (1996)  also  deal  with  climate  model tests, and  for  the  same  reasons.  Polyak  and  North 

(1997a,b)  compare  surface  temperatures  from  the  Geophysical  Fluid  Dynamic  Laboratory  GCM  with 

observed  data. In the  first  paper  they  consider  univariate  and  autocorrelation  functions of  the  data; in 

the  second  they discuss multivariate  (time  and  latitude)  autoregressive  and  linear  regression  model 

parameters  and  find  discrepancies  between  observations  and  the  GCM. For example, in the  tropics 

the  latitude-temporal  correlation  functions  that are observed  are  larger,  and  the  distribution  much 

broader,  than for the  GCM.  They  conclude  that  these are appropriate  means for the  “discovery of 

important  errors  in  the  physics or the  numerical  methodology.” 

Santer  and  Wigley  (1990)  use  a  more  conventional  synoptic  approach  and  compare  maps of 

mean  values  and  variances  of  mean  sea-level  pressure for three  models  with  observations.  They are 

concerned  with  the  significance of comparisons  between  maps  when  the  patterns  are  correlated. 

Kim,  North  and  Hegerl  (1996)  avoid this problem  by  explicit  use  of  the  covariance  patterns of the 

surface  data (Le., the  two-dimensional  EOFs). This is analogous to the  procedures  of this paper in 

the  spectral  domain;  the  spectral  and  spatial  domains  could be combined if that  should  add 

significantly to the  information  content  of  the  data.  To  judge  from  the  explained  variance of  the 

EOFs,  the  spectral  EOFs  in this paper  give  much  more  specific  information  than do the  surface  EOFs 

of  Kim, North  and  Hegerl.  While  explained  variances for the  first  EOF  of  90% are common in the 

spectral  data,  the  first  five  surface  EOFs  together  explain  only  between  39%  and  57%,  with  the.  result 

that  there is significant  crossing  between  modes. 
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This paper  interprets  satellite  radiance  covariances  in  terms  of  covariance  of  conventional 

meteorological  data in order  to  demonstrate  the  information  content  in terms familiar  to  climatologists. 

Nevertheless, this is probably  not  the  way  in  which  the  data  should be used  for  testing  climate 

models.  Radiances  are  now  assimilated  directly  into  numerical  weather  prediction  models.  Using 

inverse  modeling,  based  on  the  adjoint  equations  (e.g.,  Derber,  1989;  Errico  and  Vukicevic,  1992), 

model  sensitivity,  tuning  and  stability  analysis  can be performed.  Inverse  modeling  may be the  best 

procedure for climate  models  as  well.  It  would  yield  information  on  the  errors  in  the  physical 

processes  upon  which  the  model  is  based. As far as we are informed, this has  yet  to be done  for  a 

climate  model,  but it would be an appropriate  step in a  systematic  approach  to  model  testing. 

The  importance  of  clouds in climate is a  prominent  conclusion  from this study.  This  is 

scarcely  a  new  idea,  but  what is new is that  the  radiance  data  on  cloud  variations are objective and 

quantitutive, and  such  data  have  not been previously  available  for  climate  research.  Variance  from 

clouds  dominates  most of the  cases  examined. A model  that  cannot  reproduce  these  variances  and 

covariances is unlikely  to  yield  quantitative  predictions  of  climate  change. 

To move  beyond  this  point,  and  to  lead  to  better  climate  predictions,  requires  that  a  number  of 

things  must  happen.  For  the  radiation  calculations,  greater  accuracy is required  than is given  by 

MODTRAN.  More  precise  line-by-line  codes are available  but,  when  combined  with  multiple 

scattering  calculations,  they  can  use  unreasonably  large  amounts  of  computing  time.  Economical 

calculations  need  to be developed. In addition  to  increased  accuracy,  line-by-line  calculations can 

give  higher  spectral  resolution  that is available from MODTRAN,  and  this  will be needed in the 

future. A I R S  and  other  planned  observing  systems  will  have  higher  resolution  than IRIS, and  higher 

than  MODTFUN  can  achieve.  This  higher  resolution  should be used  to  the  fullest  extent  because it 

offers  important  increases in the  information  content  of  the  radiance  spectra. 

Better  data  are  required  from  the  GCMs. In the  first  place,  calculations  simultaneous  with  the 

observations  are  required,  but this will  certainly  be  available  for  future  observations. It goes  without 

saying  that the GCMs  must  have  good  cloud  models,  but it is  also  necessary  that  the  data  upon  which 
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the  cloud  calculations  in  the  model are based  must  be  available  along  with  normal  meteorological 

variables; this has  not  been  the case before  now. 

Finally,  new  observing  systems  are  required.  Fortunately,  even if specific  climate  missions 

are not flown, there is reason to believe  that  the  required  spectral data will  become  available  during 

the  next  decade.  The A I R S  spectrometer  on the EOS-PM1 mission  is  primarily  designed  for  weather 

forecasting,  but it can  also  be  used for spectral  covariance  analysis.  A  European  Fourier  transform 

spectrometer  is  also  in  the  planning  stage.  The  opportunity  is  opening  up to resolve  some of the  more 

vexing  problem  associated  with  the  reliability  of  climate  predictions  by  testing  models  objectively 

against  data. 
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Appendix. Inversion Methodology 

Equation  (10)  must be inverted  to  obtain  the  elements, pi , of E(') for  a  given  principal  Component, 

a ?; 
PC('). Four of  the  spectra,  each  of  which  forms  a  column  of  the  Jacobian JV,, = - , are  shown  in 

figure Al.  These  spectra,  and  the  others  that  are  not  shown  here,  are  not  orthonormal, so linear 

a pn 

regression is necessary  to  determine  what  atmospheric  variations are responsible  for the spectral 

variability. This is done  in  two  parts:  Stepwise  Regression (SR; Draper  and  Smith,  1981) is used 

to  determine  and  to  remove  the  cloud  contribution,  and  Singular  Value  Decomposition (SVD) is used 

to  determine  the  contributions  of  other  parameters. SR correlates  each  cloud  spectnun in the  Jacobian 

with  the  Principal  Component PC'" and  subtracts  those  contributions  from  the  Principal  Component 

which  are  judged  to  be  significant  by  partial-f-testing.  After  the  effect  of  cloud is removed  from  the 

- 
Principal  Component,  a new  15-element  Principal  Component, PC'" remains.  It may seem  that  the 

adjusted  Principal  Component  derived  here  should  be  nearly the same as a  principal  Component 

derived  from  screened  (clear-sky)  data;  however,  temperature  and  humidity  correlate  strongly  with 

cloud  cover,  and  the  two  Principal  Components  can  differ. 

SVD solves  for  the  temperature  and  humidity  components  of  the  atmospheric  profile  which fit 

- 
PC'" best  in  the  least-X2  sense. In SVD,  the  reduced  Jacobian, j, is decomposed  into 

orthonormal  vector  bases  by 

j= Y A V ~ ,  (All 

in which  the T-SUperSCIipt  denotes a  matrix  transpose,  the  columns of  both Y and V are  orthonormal 

vectors,  and  the  square  matrix A is  diagonal.  The  atmospheric  fluctuation E ( i )  related  to each 

adjusted  Principal  Component PC'" is then  given  by 
- 
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Each  element  of  the  vector E ( i )  can  generate  a  contribution to the  adjusted  Principal  Component,  and 

each  one  of  these  expansions  thus  represents  part of the  variability  represented  by  the  observed 

spectral  variability.  For  example,  Table 4 lists  these  contributions  given  the fiist Principal 

Component from the  ensemble of all  Amazon  spectra. 

It is unnecessary to use  all  of  the diagonal  elements of A in  the  evaluation  of  equation (A2). 

The  higher  order  elements  contain  little  explained  variance  (c.f.  table Al). If the  higher  order 

components  of A are  omitted,  the  inversion  becomes  more  stable  at  the  expense of averaging  between 

elements.  This is one of the  advantages of SVD -- that  it  enables  its  user  to  eliminate  “nullity”  in  the 

Jacobian.  Trial  and  error  indicated  that 13 elements of A (and  columns  of Y and V) are appropriate 

for  the  conditions  in  the  tropical  oceans,  but  that 11 are better  for  the  more  disturbed  conditions  in 

mid-latitudes.  Figure A2 shows  retrievals for the Warm Pool  for 12, 13, and 14 eigenvalues; 12 

eigenvalues are judged to average  too  severely  above 6 km, and  the  similarities  between  the  retrievals 

for 13 and 14 eigenvalues  indicates  that  both  were  stable. 
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Tables 

Table  1:  The  geographic regions,  see also figure 1. The  total  variances are variances  with 

units of (radiance)'  summed  over all frequencies.  They are for 5-day  averages  and  the 

complete IRIS data set, and  they  illustrate in a  general  way  the  regional  variabilities. 

Amazon 0 to 15s 65W  to  48W 2 . 4 1 ~ 1 0 ~  

Sahara 10N  to  30N 0 to 25N 2 . 2 4 ~ 1 0 ~  

Tundra 45N to  60N 60W to 90W 6 . 2 8 ~ 1 0 ~  
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Table 2: Jacobian  elements  that  have  correlation  coefficients of 0.9 or higher. 

with 

TO 

C8,C12,C16 with C8,C12,C16 

T40 with T30 

C4,T2 with 
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Table 3: contribution nns from SWSVD analysis  of  PC1  and  PC2  for  North  and  South 

Pacific  data.  1-day  and  15-day  averages  are  compared.  Only  the  two  most  important  non- 

cloud  elements  are  given.  Calculations  were  made  with  elements  based  on  both  summer  and 

winter  standard  atmospheres. Contribution rms's are  shown  in  parentheses  (summer 

followed by winter). 

l&Y 

PC2 PC 1 PC2 PC 1 

15&Y 

go.$ 70 99.8-99.8 99.4-99.6 99.5-99.6 99.9-99.9 
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Table 4: SWSVD analysis  for  PC1  for  all  data  in  the  Amazon.  Only  elements  with contribution mzs 

greater  than 0.2 are listed.  Significance  may be judged  from  the  relative  size  of  the contribution mzs 

and  the residual rms. PC rms = 5.77; residual mzs = 0.17; g.0.J = 99.9%.  Amplitudes are 

fractions  for  clouds, % relative  humidity  for  water,  and  kelvin  for  temperature. 

element 

-3.7K -1.9K 0.80K -0.86K 41%  +14% +0.09 amplitude 

T12 T6 T4 TO W8  W2 C12 

I I I I I I I I I 
contribution rms I 5.62  10.51  10.45 I 0.42 I 0.48 I 0.34 I 0.34 

I I 

Table 5: Total  variances  (see  Table 1 for  definition) for the Sahara, by averaging  time  and  by  season. 

all data, by  averaging  time I 5-day  averages, by  season 1 
I I I 

1  -day  13.91 x lo4 [ djf 10.65 x 104 
I 

I I I 
2-day 

5-day 

3.03 x 104 2.78 x 104 

1.53 x 104 ga 2.24 x 104 .. 

15-day I 0.99 X io4 son 10.72 x 104 
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Table  6: SWSVD analysis of PC1 for all  data from the  Sahara  with  5-day  averages.  Only  significant 

and  consistent  elements are listed.  W2 was significant  but  inconsistent.  Analysis  was  performed 

using  both  summer  and  winter  elements  and  both  values  are  given. 

I I I summer  winter 

cloud no  cloud  no  cloud 

TO amplitude, K +4.3 +3.7 

TO contribution  rms 5.99 3.44 

C4T2  amplitude, K +3.8 +2.2 

C4T2  contribution rms 2.09 1.82 

PC mts 3.72 3.72 

residual rms 0.39 0.33 

g .  0.  f .  98.9 99.2 

Table  7:  Total  variances  (see  Table 1 for  definition) for the  Siberian  Tundra,  by  averaging  time  and  by 

season. 

I 1-day  17.10 x 104 ldjf  10.36 x 104 I 
2-day 

4.76 x 104 son  5.52 X 104 15-day 

1.03 x 104 a a  6.28 x 104 5-day 

1.96 x 104 mam 6.81 x 104 

.. 
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I 

Table 8: SWSVD analysis  of  PC1  for all data,  5-day  averages,  for  the  Siberian  Tundra.  Analyses 

were  made  with  both  summer  and  winter  elements;  both  results  are  shown.  The  only  elements  listed 

are  both  significant  and  consistent. 

I summer I winter 

cloud I no  cloud I no  cloud 

TO amplitude, K +5.1 +5.1 
I 

TO contribution rms 3.1 5.01 
I 
I 

C4T2  amplitude, K +3.5 +6.3 
I 

I I 
C4T2  contribution rms I 3.09 5.01 

+11.7 

T4  contribution rms 

+11.2 

T6  contribution rms 

T40  amplitude, K +6.8  +7.9 

T40  contribution rms 0.52 0.48 

PC ims 4.55  4.55 

residual m 0.32 0.27 

g. 0.  f .  99.5  1  99.65 
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Table A1 : Eigenvalues  and  explained  variance for an SVD expansion of tropical, non-cloud  elements. 
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Figure Captions 

Figure 1: The  geographic  regions,  see  also  table 1. 

Figure  2:  IRIS  observations  in  the  Central  Pacific  region  for a  5-day period, from mission  day  117  to 

121.  The  filled  ellipse at the  lower  left  indicates  the IRIS footprint.  Crosses are for  local  noon 

equator  crossings  and  circles  for  local  midnight  crossings.  The  lines  indicate  the  GCM  grid.  GCM 

data  at 0 and  12  GMT  were  used. 

Figure 3: Retrievals  for  the Warm Pool,  5-day  averages, all data:  a. PC1 ; b.  residual (PCl-best fit 

PC from SWSVD inversion).  Note  the  unsatisfactory  fit  for  the CO, Q-branches  at  618  and  721  cm- 

1 

Figure 4: IRIS data  for  the Warm Pool. “all data”  refers  to  the  entire IRIS data  set  (5527  spectra 

recorded  over 10 months),  while  “screened”  refers  to  the  clear-sky  data  (597  spectra). E.V. is the 

explained  variance  of  the  PC.  5-day  averages  are  employed  a.  average  radiances;  b.  standard 

deviations;  c. PCls; d.  PC2s. 

Figure  5: IRIS data  for  the  Central  Pacific. Details as for figure 4. “all data”  involves  9872  spectra, 

while  “screened”  involves  5006. 

Figure 6: IRIS data  for  the  Indian  Ocean. Details as for  figure 4. “all data” involves  7979  spectra, 

while  “screened”  involves  2089. 

Figure  7:  The  vertical  structure of covariance  of  PC1 s (see  figures 4, 5, and 6) for the  complete data 

set  for: a.  the  Central  Pacific;  b. Warm Pool;  c.  Indian  Ocean.  The  contributions  (left  of  each  pair) 
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are  from  the SVD solution  (see  Appendix).  The  lowest 0.5 km is assigned  to TO. The  right  member 

of each  pair  shows  the  associated contribution rms (clear  areas)  and  the residual rms (shaded  area). 

The  test  of  significance is whether  a contribution rms exceeds  the residual rms. Data on  the  cloud 

from  the SR solution  and  other rms data  are  given  below. 

Central Pacific Indian ocean Warm Pool 

PC rms 4.16  3.49 2.30 

cloud  height, km I 16  12  16 I 
cloud m 4.1 1 3.38 1.63 

I 

residual m 0.09  0.12 0.09 
I 

g.0.f. % 99.92  99.93 99.85 

Figure 8: Comparison  between PCls, 5-day  averages, for Central  Pacific:  a. PCls; b. SWSVD 

analysis of IRIS screened  (clear-sky)  data; c. SWSVD analysis of GCM data. See figure 7 for further 

explanation of the  bottom  panels. g.0.f. and mzs data are shown  below. 

I IRIS GCM 
I 

PC rms I 0.92  0.63 I 
residual m 0.05 0.12 

g.0.f .  % 99.4 98.3 
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Figure 9: Comparison  between PC Is, 5-day  averages,  for Warm Pool:  a. PCls; b. SWSVD analysis 

of IRIS screened  (clear-sky) data; c. SWSVD analysis  of GCM data.  See  figure 7 for  further 

explanation  of  the  bottom  panels. g.o.5 and m s  data  are  shown  below. 

I I IRIS GCM 

PC m I 0.53 0.6 1 1 
residual m 

99.5  98.2 g . 0 . j  % 

0.04 0.07 

Figure  10:  Comparison  between PCls, 5-day  averages,  for  Indian Ocean: a. PCls; b. SWSVD 

analysis  of IRIS screened  (clear-sky)  data; c. SIUSVD analysis  of GCM data.  See  figure 7 for further 

explanation of the  bottom  panels. g.o.5 and mzs data are shown  below. 

I I I 1 IRIS GCM 
I 

PC m s  0.50 0.63 

residual m 

99.6 98.0 go.$ % 

0.03 0.09 

- 

Figure  1 1: Standard  deviations  for  all  data,  for l-day, 2-day,  5-day  and  15-day  averages:  a. North 

Pacific;  b.  South  Pacific;  c.  Central  Pacific 
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. 
Figure  12:  PC1 for all  data,  1-day  and  15-day  averages:  a.  North  Pacific;  b. South Pacific. 

Figure 13:  PC2 for all data,  1-day  and  15-day  averages:  a.  North  Pacific;  b. South Pacific. 

Figure  14: IRIS data  for  the  Amazon.  5-day  averages  for  the  complete  data  set  are  used:  a.  radiance; 

b. standard  deviation;  c.  PC1,  explained  variance  97.5%; d.  PC2,  explained  variance  1.7%. 

Figure  15:  IRIS data  for  the  Sahara.  5-day  averages  are  used  for  the  complete  data  set:  a.  radiance by 

season;  b.  standard  deviation;  c.  PC1,  explained  variance  93.3%;  d.  PC2,  explained  variance  5.2%. 

Figure  16: IRIS data  for  the  Siberian  Tundra:  a.  radiance by season; b. standard  deviation  by 

averaging  time;  c.  PC I for  5-day  averages,  explained  variance  98.3%. 

Figure Al: Four  elements  used  in  analysis.  Each  element  represents  the  change  in  outgoing  radiance 

when  a  change  is  made  to  one  variable in one  layer of a US Standard  (tropical)  Atmosphere:  a. TO, 2 

K change  in  surface  temperature;  b.  T6,  2 K change  in  air  temperature  from 4 to 6 km, c. W2, 40% 

change  in  the  relative  humidity  from 0 to 2 km; d.  C12,  unit  emissivity  change  for  a  cloud  with  its 

top at 12 km. 

Figure A 2 :  Covariant  amplitudes  for  water  and  temperature  in  the Warm Pool  from SFUSVD 

retrievals  5-day  averages  for  all  data:  a. 14 eigenvalues;  b. 13 eigenvalues;  c. 12 eigenvalues. 
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